A parallel unmixing algorithm for hyperspectral images

نویسندگان

  • Stefan A. Robila
  • Lukasz G. Maciak
چکیده

We present a new algorithm for feature extraction in hyperspectral images based on source separation and parallel computing. In source separation, given a linear mixture of sources, the goal is to recover the components by producing an unmixing matrix. In hyperspectral imagery, the mixing transform and the separated components can be associated with endmembers and their abundances. Source separation based methods have been employed for target detection and classification of hyperspectral images. However, these methods usually involve restrictive conditions on the nature of the results such as orthogonality (in Principal Component Analysis – PCA and Orthogonal Subspace Projection OSP) of the endmembers or statistical independence (in Independent Component Analysis ICA) of the abundances nor do they fully satisfy all the conditions included in the Linear Mixing Model. Compared to this, our approach is based on the Nonnegative Matrix Factorization (NMF), a less constraining unmixing method. NMF has the advantage of producing positively defined data, and, with several modifications that we introduce also ensures addition to one. The endmember vectors and the abundances are obtained through a gradient based optimization approach. The algorithm is further modified to run in a parallel environment. The parallel NMF (P-NMF) significantly reduces the time complexity and is shown to also easily port to a distributed environment. Experiments with in-house and Hydice data suggest that NMF outperforms ICA, PCA and OSP for unsupervised endmember extraction. Coupled with its parallel implementation, the new method provides an efficient way for unsupervised unmixing further supporting our efforts in the development of a real time hyperspectral sensing environment with applications to industry and life sciences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

جداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA

Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...

متن کامل

Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing

  The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...

متن کامل

تجزیه‌ ی تُنُک تصاویر ابرطیفی با استفاده از یک کتابخانه‌ ی طیفی هرس شده

Spectral unmixing of hyperspectral images is one of the most important research fields  in remote sensing. Recently, the direct use of spectral libraries in spectral unmixing is on increase. In this way  which is called sparse unmixing, we do not need an endmember extraction algorithm and the number determination of endmembers priori. Since spectral libraries usually contain highly correlated s...

متن کامل

Analysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques

Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...

متن کامل

GPU Implementation of Spatial-Spectral Preprocessing for Hyperspectral Unmixing

Spectral unmixing pursues the identification of spectrally pure constituents, called endmembers, and their corresponding abundances in each pixel of a hyperspectral image. Most unmixing techniques have focused on the exploitation of spectral information alone. Recently, some techniques have been developed to take advantage of the complementary information provided by the spatial correlation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006